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ABSTRACT 
While there have been great advances in quantification of the 
genotype of organisms, including full genomes for many species, 
the quantification of phenotype is at a comparatively primitive 
stage. Part of the reason is technical difficulty: the phenotype covers 
a wide range of characteristics, ranging from static morphological 
features, to dynamic behavior. The latter poses challenges that are in 
the area of multimedia signal processing. Automated analysis of 
video and audio recordings of animal and human behavior is a 
growing area of research, ranging from the behavioral phenotyping 
of genetically modified mice or drosophila to the study of song 
learning in birds and speech acquisition in human infants. This 
paper reviews recent advances and identifies key problems for a 
range of behavior experiments that use audio and video recording. 
This research area offers both research challenges and an 
application domain for advanced multimedia signal processing. 
There are a number of MMSP tools that now exist which are 
directly relevant for behavioral quantification, such as speech 
recognition, video analysis and more recently, wired and wireless 
sensor networks for surveillance. The research challenge is to adapt 
these tools and to develop new ones required for studying human 
and animal behavior in a high throughput manner while minimizing 
human intervention. In contrast with consumer applications, in the 
research arena there is less of a penalty for computational 
complexity, so that algorithmic quality can be maximized through 
the utilization of larger computational resources that are available to 
the biomedical researcher. 

Categories and Subject Descriptors 
J.3 [Life and Medical Sciences]: Biology and genetics – 
neuroscience 
I.4.0 [Image Processing and Computer Vision]: General 
J.4 [Social and Behavioral Science]: Neuroscience 

General Terms: Experimentation, Measurement, Algorithms 

Keywords: audio, behavior, birdsong, human, infant, 
locomotion, mouse, multimedia, neuroscience, phenotype, signal 
processing, video, vocal development, zebra finch 

1. INTRODUCTION 
Understanding how brains work is perhaps the “final frontier” for 
science. Technical advances have played a major role in 
contemporary progress in neuroscience, as illustrated by the rapid 
growth in the use of brain imaging techniques. While not quite as 
prominent in the public gaze, a small technical revolution is 
currently taking place in the area of automated analysis of animal 
and human behavior. Quantification of behavior is critical to 
understanding brains, since behavior is the output of brain function. 
The scientific study of animal behavior or Ethology is a discipline 
that was developed in the early and mid-twentieth century. What we 
are now witnessing is the growth of the field of Quantitative 
Ethology, aided by computational analyses of digitized recordings 
of behavior. Multimedia signal processing (MMSP) is central to this 
field, since behavior is typically digitized by making audio and/or 
video recordings. In this paper we examine four case studies of 
Quantitative Ethology using audio and video signal processing. The 
field is still in its infancy and presents research challenges in MMSP 
with both practical and scientific interest. 
Many neuroscience behavior experiments can be characterized by 
the sets of time-varying sensory inputs presented to the subject and 
the behavioral plus physiological output signals which result. The 
output may be used as feedback during the experiment and/or 
recorded for later analysis. Audio and video presentation and 
recording are often an integral part of an experimental paradigm, 
and appropriate signal processing and general analysis techniques 
need to be applied in order to properly interpret the results or drive 
the experiment in real-time.  
Audio has long been a staple channel as both input and output, but 
only relatively recently have advanced signal processing techniques 
entered into neuroscience for its analysis. The usage of simultaneous 
video recordings is also increasing as mass-market consumer 
electronics advances lower the monetary, computing power, 
bandwidth and storage capacity costs. Video is often an unobtrusive 
addition to an existing setup and may help to explain a finding or an 
anomaly later in the analysis. However, the additional complexity 
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and heterogeneity of video data compared to audio presents greater 
difficulties for the average neuroscientist. 
Our goal is to be illustrative rather than exhaustive in our review. In 
each case, we present some biological background to motivate the 
signal and image processing methods, followed by some details of 
the algorithms used, and biological findings. Some of the techniques 
that we present in the paper are relatively elementary, but have 
already produced important advances in the field, thus illustrating 
the potential for further advances. In all cases, the data volumes are 
large, and may easily reach into the terabyte range for audio alone. 
We will not focus on the issues that arise from managing such large 
volumes of data; these do form an integral part of the data analysis 
challenge. We will also not attempt to cover any of the literature on 
adult human speech, although this is perhaps the oldest and most 
well developed form of behavioral quantification. Finally, we will 
not cover areas such as annotation of digital television or film, that 
are already established areas in MMSP that are nevertheless related 
to the subject matter discussed in this paper. We chose our examples 
to illustrate the potential for MMSP in neuroscience research. 

2. AUDIO ANALYSIS 

2.1 Birdsong 
All true songbirds (in biological terms: order Passeriformes, 
suborder Oscines) are thought to develop their songs by reference to 
auditory information [28]. This can take the form of improvisation 
or imitation [19, 33, 51]. In both cases, vocal development is guided 
by auditory feedback [24], [39]. The quantification of the similarity 
between two songs is necessary to study a number of phenomena, 
such as the choice of model song and the timing of model 
acquisition by songbirds, the social context in which imitation 
occurs, and the neural basis for song learning behavior. 

Early analysis of birdsong was based on visual inspection of 
spectrograms [50]. Songs may be partitioned into ‘syllables’ or 
‘notes’, defined as continuous sounds preceded and followed by 
silent intervals or by abrupt changes in frequency. In early studies of 
vocal learning, notes of the pupil’s song that best matched the 
tutor’s song were identified, and assigned a numeric similarity score 
[40, 46] through visual inspection. Although the visual approach to 
scoring similarity made good use of the human eye and brain to 
recognize patterns, such measures of similarity were arbitrary and 
idiosyncratic. It was recognized a while ago that a quantitative, 
automated scoring of similarity was necessary to improve the 
quality of the measurements and facilitate comparisons between 
results obtained by different laboratories. However, it took several 
attempts by a number of groups before such methods could be used 
in practice.  

Here an analytical framework is described for the automated 
characterization of the songbird vocalization, using zebra finch as an 
example [18, 47]. The approach uses a robust spectral analysis 
technique that identifies those acoustic features that have good 
articulatory correlates. The articulatory features are based on in vitro 
observations and theoretical modeling of sound production in an 
isolated syrinx [12]. Some results are presented here from the 
application of this method to a large database of zebra finch songs1, 
illustrating the dynamics of the vocal imitation process [45] and the 
effects of sleep on the developmental learning of bird song [8]. The 
methods were developed in collaborative work involving two of the 
authors of the paper.  
2.1.1 Continuous recording of birdsong and 
automated measurement of song similarity 
It is important to have continuous recording of bird song in order to 
study the vocal learning process. In our recording and analysis 
system, the training regimen for each bird is automated and song 
playbacks are delivered in response to key pecks. Once the bird has 
been placed in the training box, the system records its vocalization 
continuously. A song recognition procedure [44] detects and records 
the songs, discarding isolated calls and cage noises.  

Rather than using the spectrogram directly to analyze the audio 
signals, the method uses time and frequency derivatives of the 
spectrogram in the time-frequency plane. These derivatives can be 
estimated robustly using Multitaper spectral methods [48], [49] and 
remove slowly varying noise sources (including gain noise). Zero 
crossings of the derivatives are used to estimate the time dependent 
positions of peaks in the spectrum (peak frequency contours), 
providing a spectral representation that is not blurred by time-
frequency uncertainty. This facilitates the accurate detection of 
events in the time frequency plane. The spectrogram is high 
dimensional; it is easier to proceed by reducing dimensionality by 
introducing a small set of features (see Figure 2.1). A feature vector 
is used to represent each time window of a song. To arrive at an 
overall score of similarity, the features are normalized and 
combined using appropriate weights.  

                                                                 
1 Currently at over 100 birds, with every song made during their 

lifetime recorded at 16 bit 44.1 KHz (100-150 hours total per 
bird), for a total of over 10 TB of data. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. (a) Pitch is a measure of the period of the sound 
and its value is high when the period is short and low when the 
period is long. (b) Frequency modulation is a measure of the 
mean slope of frequency contours. (c) Wiener entropy (a 
measure of randomness) is high when the waveform is 
random, and low when the waveform is of pure tone. (d) The 
spectral continuity value is high when the contours are long 
and low when the contours are short. 



A short timescale similarity matrix is defined by taking pair-wise 
Euclidean distances between features corresponding to different 
time slices in the song. The comparison of pitch with an artificial 
tutor-pupil is shown in Figure 2.2.a. In this case, strong similarity is 
shown by a bright and concentrated diagonal. In reality, however, 
different windows often share similar patterns of power spectrum. It 
follows that high similarity values may occur in off-diagonal 
locations of the similarity matrix in addition to diagonal locations 
even for similar songs, as illustrated in Figure 2.2.b (7 ms time 
window). The solution is to compare intervals consisting of several 
windows. If such intervals are sufficiently long, they will contain 
enough information to identify a unique song segment. The 
combination of multiple features can also improve the comparison 
(Figure 2.2.c and 2.2.d). The final score of similarity combines the 
two scales: the ‘large scale’ (70 ms) is used for reducing ambiguity, 
while the ‘small scale’ (9 ms) is used to obtain a fine-grained 
quantification of similarity. 

2.1.2 Dynamics of the vocal imitation process 
Interesting dynamics may occur during the vocal imitation process 
of zebra finches [45]. An imitation trajectory could take a path 
leading directly from the acoustic features of sounds produced 
before exposure, to those of a target sound present in the model song 
[5]. Alternatively, as illustrated in Figure 2.3.a, an imitation 
trajectory might deviate from a direct path due to constraints arising 

from neurophysiology or the biophysics of the vocal apparatus. The 
figure shows a period doubling of the vocal pitch during 
development. We have also observed other `nonlinear’ imitation 
trajectories during the vocal imitation process, which indicate the 
presence of interesting dynamics in the development of the 
underlying neural networks. In particular, we have observed 
similarities between the developmental trajectories of zebra finch 
song, and the vocal development of human infants during the 
babbling stage. More details of this study may be found in the 
original papers. 

2.1.3 Sleep effects on the developmental learning of 
bird song 
The effect of sleep on the developing zebra finch was quantified by 
comparing the statistical properties of pre-identified syllable classes 
produced at different times. To establish a baseline for vocal 
changes and to estimate our measurement errors, we compared 
differences across two random samples of 100 songs produced 
during the same day. For similar 100 song samples taken on 
successive days, we find that the day-to-day vocal changes are 
higher than within-day changes. Strikingly, the evening-to-next-
morning changes are higher than the midday-to-midday changes. 

Because vocal changes after 12 h of night-sleep are larger than the 
overall changes that occur during 24 h, vocal changes must oscillate 
during a daily cycle, as demonstrated in Figure 2.4. Pooling all the 
variance features show that during the early syllable development, 

 
Figure 2.2. Similarity measure improves as comparisons 
include longer intervals and more features. (a) Similarity 
matrix across pitch values of identical, artificial sounds. 
Because each of these simple sounds has a unique pitch, the 
similarity matrix shows high similarity values across the 
diagonal and low values elsewhere. Comparing complex 
sounds would rarely give such result. As shown in (b), 
although the songs are similar, high similarity across features 
(in this case, of Wiener entropy values) are scattered. (c) 
Ambiguity is reduced when we compare Wiener entropy 
curves between 70-ms intervals. (d) A combined similarity 
matrix between 70-ms intervals across features. High 
similarity values are now restricted to the diagonal, indicating 
that each of the notes of the father’s song was imitated by his 
son in a sequential order. The curves overlaying the time–
frequency derivative in (d) correspond to spectral continuity, 
pitch and frequency modulation. 

Figure 2.3. Indirect and direct approaches to the imitation of 
harmonic stacks. (A) Spectral derivatives of a developing 
harmonic stack in reference to a syllable from a model song 
(left). The pitch of the harmonic stack is given at the top of 
each panel. A quantitative examination of the pitch error 
between this developing harmonic and the model harmonic 
stack shows a gradual increase of error, followed by an abrupt 
period doubling that reduced the error in a single step (right). 
The graph presents the mean pitch values of harmonic stacks 
produced by this bird across 30-s samples of birdsong 
recorded on each training day. (B) An example of harmonic 
stack imitation where pitch error gradually decreased until a 
match to the model syllable was reached. 



the diversity in syllable features is low in the morning compared to 
the previous evening. The decrease in syllable structure in the 
morning may suggest that song is less structured and more primitive 
after sleep, but only during days of rapid learning.  

The overall magnitude of post-sleep deterioration during 
development was found to be positively correlated with the eventual 
similarity to the model song. Thus, birds that showed a large “sleep 
effect” on the song were also the better imitators. Control 
experiments show that these oscillations are not a result of “sleep 
inertia” or lack of practice, indicating the possible involvement of an 
active process, perhaps neural song-replay during sleep. We suggest 
that these oscillations correspond to competing demands of 
plasticity and consolidation during learning, creating repeated 
opportunities to reshape previously learned motor skills. 

2.1.4 Discussion 
The acoustic features used in our analysis are not necessarily the 
‘best’ set for characterization of the bird songs, but bear a close 
relation to the articulatory variables involved in sound production. 
New features may be derived not only from deeper understanding of 
the sound production apparatus, but the statistical analysis of the 
songs as well.  

Although vocal learning remains a highly complex phenomenon 
with many unknown aspects, the tools that we used simplify the 
objective study of its dynamics, and enable us to analyze changes in 
real time. Neural and peripheral recordings are becoming common 
as well, enabling integrated data analysis at many levels of the song 
production system. This should provide us with further insights, 
paving the way for identifying the molecular, cellular, and circuit 
events that must underlie the moment-to-moment progression 
toward vocal imitation.  

2.2 Vocal Development in Human Infants 
Adult human vocal communication, including speech, starts its 
development very early in life, probably even before the first breath 
(for a review see [41], pp. 7-33 and 93-94). In [29], a follow-up 
study of two infants’ vocal behavior from birth to one year old was 
conducted using traditional ethological observation. The 
segmentation criteria used was based on the breath unit, and the 
vocalizations were classified according to the type of phonation and 
the type of articulatory movement2 performed in each breath unit, 
with no reference to adult language (see [26] for details). The 
authors could distinguish 6 stages in early speech development, each 
of which starts with the use of a new kind of vocal behavior3.  
At stage I (birth), phonation is continuous, the prosodic patterns are 
simple and there is no articulatory movement within the breath unit: 
sound production is mainly driven by the larynx activity.  
At stage II (6 weeks), infants start to make use of interrupted 
phonation: this gives rise to the first rhythmic vocalizations.  
Stage III (10 weeks) infants start to produce vocalizations with one 
articulatory movement, combined with continuous phonation 
(explored at stage I) or interrupted phonation (experienced in stage 
II).  
Stage IV (20 weeks) is characterized by a diversification of the 
phonation patterns in terms of intonation, duration and intensity. 
Furthermore, the frequency of the third stage unitary movements 
decreases while that of continuous phonation without articulatory 
movement increases.  
Stage V (26 weeks) is marked by the appearance of vocalizations 
achieved by multiple articulatory movements, be they repeated or 
varied, combined with continuous or interrupted phonation 
(combinations coming from stage III) and with a great variety of 
prosodic patterns (diversity stemming from stage IV). This behavior 
corresponds to babbling, that the authors define as a “repetition or a 
combination of articulatory movements during one single expiration 
cycle with interrupted or continued phonation” [52]. 
At Stage VI (40 weeks), all previous vocalizations start to be used to 
refer to things, such as events, in specific situations. These are the 
first words. 
In sum, the study in [25] shows that early vocal behavior may 
develop in a hierarchically structured way with temporal and 
functional links between the abilities of a given stage and those of 
the previous stages. Such a developmental process has to be 
investigated quantitatively using detailed acoustic characterization 
of infant vocalizations, at the population level and with attention to 
individual variability in the course of development. 

                                                                 
2 Articulatory movement is defined here as “all kinds of 

constrictions or frictions that can be made by means of 
articulatory organs”. 

3 The approximate age of the beginning of each stage is displayed 
between parentheses. At each stage the vocalizations introduced 
at previous stages are still in use, but lessen progressively in the 
course of development. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.4. A song feature that shows sleep-associated 
oscillations between days 45 and 60. 

Start training

45 50 60 7

Age (days) 

En
tr

op
y

Va
ri
an

ce

0

0.5

1

1.5 Start training

45 50 60 7

Age (days) 

En
tr

op
y

Va
ri
an

ce

0

0.5

1

1.5 Start training

45 50 60 7

Age (days) 

En
tr

op
y

Va
ri
an

ce

0

0.5

1

1.5

0

0.

1

1.

2

8 8h 20

 

 

 

 

 

Night Day Day 

Time of day 



However, research on how vocal communication evolves in infancy 
mainly focuses on language acquisition, with special interest in 
perception4 of abstract linguistic categories (phonemes). When 
production5 is studied, infant vocalizations are identified using 
phonetic transcription6. 
The phonetic transcription methods in use raise two main issues: (i) 
the transcribers tend to select and categorize infant vocalizations 
under the influence of their language background (see [20] for a 
foreign language example); and (ii) since phonetic transcription is 
designed to describe adult languages, applying it to infant sounds is 
making the implicit assumption that the sounds are produced the 
same way in adulthood and in infancy. Although some speech 
development studies are based on objective acoustic measurements 
of infant vocalizations: [22], [29], [36] and [53], they were 
conducted on small numbers of infants, with a small amount of data 
per infant collected at relatively few time points in the course of 
early development. 
In contrast with songbirds, human infants cannot be isolated in 
experimental boxes: the recording environments are invariably 
contaminated by adults talking, sounds of nearby children and all 
kinds of noise. This introduces privacy concerns on behalf of the 
infants, family and caregivers, so the participants are often the few 
children of the investigators and their acquaintances. Moreover, to 
date, no automated signal processing tools are available in the 
domain to detect, to separate from adult voices and background 
noise in the recording environment, and/or to acoustically analyze 
human infant sounds. As a consequence, researchers tend to 
manually isolate infant sounds that are (i) free from any source of 
noise, (ii) speech-like only, and (iii) acoustically describable 
according to features, such as resonance frequencies that can be 
reliably measured in the case of adult speech but not in the case of 
infant high-pitch sounds (see Figure 2.5). This leads to a lack of 
statistical significance of the results and impedes accurate 
investigation into infant vocal behavior over time. 
Based on this brief review, it should be clear that the quantitative 
study of infant vocal development is an area of research that will 
greatly benefit from the application of MMSP techniques, but there 
are other challenges to be solved as well for the field to advance. 
The lack of data-sharing and effective tools may be addressed by 
bringing together a consortium of researchers with different skills to 
jointly work on the problem. Analysis software for segmentation, 
annotation and supervised or unsupervised classification can then be 
written, which would increase the value of existing data and 
hopefully encourage more to be taken. If the software could 
accurately remove adult speech, many privacy and data quality 
issues could be solved as well. Success in this endeavor would 
engender trust, which may lead to greater data sharing and perhaps 
shared repositories or joint large scale studies. While we have only 
reviewed the analysis of audio data, simultaneous video is often 

                                                                 
4 Roughly, perception is the receiver’s ability to process incoming 

signal. 
5 Production is the emitter’s ability to make and send outgoing 

signals. 
6 In phonetic transcription, adults listen to the infant, cut her/his 

stream into “consonant” and “vowel” pieces and classify each 
piece as part of a given phonetic category, that is, a consonant 
or a vowel defined as in the International Phonetic Alphabet. 

available and could be useful for tasks like sound segmentation and 
source identification using facial movement and body gestures. 
Similar considerations as audio apply to the analysis of video data: 
current efforts are based largely on manual segmentation and 
classification, and there is much scope for research tools using 
MMSP. 

3. VIDEO ANALYSIS 
3.1 Rodent Locomotion 
The characterization of phenotype in animals often begins with a 
proper analysis and categorization of locomotor and exploratory 
behaviors. Not only do these investigations equip researchers with 
much-needed measures of behavior for use in neurophysiological 
studies, but they also offer a unique insight into the brain of the 
animal. When used in conjunction with genetic techniques, a 
thorough investigation of locomotor behavior can help provide an 
outside-in description of the animal that connects behavior to neural 
structure and function to genetics. This description can then help 
elucidate the mechanisms for complex behaviors such as learning 
and memory, attention, anxiety, and fear. Genetically modified 
rodents serve as models for neurological and neuropsychiatric 
disorders, and behavioral quantification is important in assessing the 
effect of pharmacological and other therapeutic techniques in these 
model organisms. Thus, video analysis of rodent behavior plays an 
important role in research into mental health as well as drug 
development.  
Because of this, locomotor behavior in the Open Field is a widely 
used test in behavioral neurosciences [1], particularly in the study of 
genetically engineered mice [3]. In a recent study conducted 
concurrently in three laboratories, and following an identical 
protocol, it has been shown, however, that many results were not 
replicable across laboratories [7]. A subsequent study has further 
shown that a major source for the replicability problem is the 
absence of an appropriate measurement methodology [21]. 
Appropriate tools for data acquisition, data preparation for analysis, 
isolation of relevant kinematic variables, and segmentation of the 
data time series into units are thus prerequisites for obtaining results 

Figure 2.5. A Multitaper spectrogram showing a 6 month old 
infant vocalization. The horizontal axis is time in seconds, the 
vertical is frequency in Hz. Colored shading indicates power.  



that are replicable across laboratories. In what follows we present 
several examples of such tools.  
The measurement of rodent locomotion from video data is not 
straightforward. Different analysis techniques need to be used 
depending upon the resolution, frame rate and desired level of 
positional characterization. It was found that a high tracking rate is 
necessary to capture many properties of rodent behavior, especially 
in the fast-moving mouse [17]. The X and Y coordinates of the 
center of mass of a rodent in an open arena are perhaps the simplest 
measures to be made from a video recording, but there are pitfalls 
even there. The erratic movement of mice presents a challenge for 
measuring the position and velocity of the mice, which are the raw 
data from which further phenotypic measures could be derived. This 
is because the data include several sources of noise, and several 
modes of movement, each requiring a different method of 
smoothing. The raw location time-series includes 1. system noise, 2. 
changes in body shape, and 3. outliers.  
Locomotor behavior consists of progression segments and lingering-
in-place intervals. A Repeated Running Median (RRM) method is 
used to identify arrests. Subsequently the method of Locally 
Weighted Sum of Squares (LOWESS, see [6]) is used to smooth the 
path between arrests (see Figure 3.1). The RRM method isolates the 
arrest episodes so they will not be corrupted by the subsequent 
LOWESS smoothing. LOWESS solves both the precision noise and 
outliers problems using an iterative procedure similar to the Local 
Polynomials method (LP, [11]) with added robustness to outliers. 
As in the weighted LP, the first iteration of LOWESS fits a 
polynomial to the data in a time-window centered at t. The resulting 
polynomial, however, is used only as a first estimation. Each 
original data point is then assigned a weight according to its 
difference from its first estimation (residual). A larger residual 
(indicating a poorer fit) results in a smaller weight for the 
corresponding data point, implying it will be less relevant for 
computing the next fitted polynomial. At the extreme, a very large 
residual indicates that the point is an outlier, and it is assigned a zero 
weight, implying it will have no effect at all on the next iteration. In 
the second iteration of LOWESS the raw data in the window is 
fitted again with weighted LP, but this time using also the weights 
according to the residuals. In the original algorithm these iterations 
continue as above until no further change occurs, but practically it 
has been found that two iterations suffice.  
The smoothing algorithm is part of SEE, a publicly available 
software package (Strategy for the Exploration of Exploratory 
behavior [2]). The output of the SEE smoothing module includes the 
smoothed data, data of momentary speeds, and momentary 
accelerations.  
After smoothing, the data time series is segmented into progression 
segments and lingering, or staying-in-place episodes. The method of 
deciding which time slices correspond to progression and lingering 
segments is shown in Figure 3.2.B. A density graph (a sliding 
window histogram) of the frequency distribution of peak speeds in 
inter-arrest segments reveals two distinct populations: low speed 
segments (lingering or stopping episodes) and high speed segments 
(progression segments). A Gaussian mixture model is used for 
recognizing the distinct components within the population of inter-
arrest segments. The parameters of the mixture model are estimated 
by using the Expectation–maximization (EM) algorithm. The 
algorithm estimates the maximum likelihood parameters 
(proportions, means, and SDs) of a mixture with a given number of 

components. EM is an iterative algorithm that starts with user-given 
initial values, and incrementally improves the likelihood function 
until further iterations yield only a negligible improvement. The 
actual number of components of the model is determined by 
comparing the maximum likelihood value of an n-components 
mixture with that of a (n+1)-components mixture until the increased 
number of components increases the likelihood only marginally. For 
an exposition see [10]. In Figure 3.2.D the path plot and speed 
profile of two progression segments (P1 and P2) are separated by 

Figure 3.1. Location (bottom graph) and velocity (top graph) 
out of 6 s of a mouse’s movement, smoothed with several 
methods. “Raw” velocity (gray, top graph) is calculated as the 
differences between consecutive raw locations. MA (Moving 
Average) velocity (top, red) is calculated as the differences 
between consecutive MA smoothed locations. LP (Local 
Polynomial) velocity (top, green) is calculated directly by the 
LP. LOWESS-smoothed locations and velocities were almost 
identical to those calculated by LP since there were no 
outliers. Arrests (time range denoted by yellow stripes) are 
computed as zero velocity in the RRM (Repeated Running 
Medians) smoothed series. MA is applied with a window width 
of 15 frames. LP is applied with a window width of 15 frames 
and a degree of 2. RRM is applied with four iterations using 
half windows of 3, 2, 1, and 1. 



one lingering episode (L1). The typical properties of these units are 
used to quantify the behavior. For example, the segment 
acceleration endpoint (see Figure 3.2.E) is estimated by dividing the 
segment’s speed peak by its duration, i.e., the aspect ratio of a 
segment’s speed profile. 
The progression  segments are further classified into 4 types of 
patterns (Figure 3.3): So called “wallcursions”, small incursions, 
median incursions, and large, across center incursions. This is done 
by using radial speed and maximal distance from wall for further 
classification of the  segments population [30]. The careful 
smoothing, and the segmentation, which is based on intrinsically 
defined geometrical and statistical properties, increase the 
replicability of the behavioral measures. 
We have described the video analysis methods that are currently in 
use to study rodent locomotor behavior. In these current studies, the 

animal is treated as a point object. The challenge for MMSP 
research would be to develop techniques that will move beyond this 
and enable the treatment of posture and position of individual limbs. 
Moreover, recent research shows that rodents vocalize in the 
ultrasonic range, thus opening up the possibilities of MMSP 
research into simultaneous video-ultrasonic audio recordings of 
rodent behavior. The importance of such tools to future advances in 
neuroscience cannot be over-emphasized.  

3.2. Drosophila Behavior 
The fruit fly Drosophila melanogaster has become ubiquitous in 
neurogenetic and neurobehavioral studies for many reasons. 
Sophisticated mutagenesis techniques have been developed for the 
fly (e.g. chemical mutagenesis, mobilization of transposable 
elements, selective breeding), and the short reproductive cycle and 
ease with which flies are maintained have greatly facilitated genetic 
engineering of these organisms. In addition, the Drosophila genome 
is known, and over half of Drosophila genes have direct human 
homologues. Add to this the rich repertoire of complex behaviors 
that fruit flies exhibit, and it becomes apparent that Drosophila is an 
incredibly useful organism for elucidating the genetic and neural 
mechanisms responsible for the complex behavioral phenotypes 
seen throughout nature.  

Many behavioral assays have been developed to study complex 
behaviors in Drosophila such as attention [54, 55], sleep [16, 42], 
visual and olfactory learning and memory [31, 32, 37], courtship 
[15, 38], and aggression [27], [4]. Unfortunately, “fly psychology” 
is quite difficult; any inference made from these assays can be 
subject to anthropomorphic bias of the investigator. Therefore, the 
experimental designs and the resulting behavior require careful 
analysis if the results are to provide an accurate description of the 
phenomenon of interest.  

The fact that the locomotor behavior of the fly is central to any 
behavioral assay is often overlooked in these studies; it is difficult to 
observe behavior without the fly moving some part of its body. In 
addition, many of these assays require the flies to have normal 
motor activity; therefore, measurement and characterization of 
locomotor activity is essential. Naturally, this is no easy task, and 
much of the difficulty actually lies in defining parameters that 
characterize such activity. Even so, there has been considerable 
progress in this area (see [34] for a review). Several parameters that 
are commonly used for locomotor activity characterization include 
spatial preference, total distance moved, mean and instantaneous 
walking speed, and the duration of bouts of activity and inactivity.  

The techniques for measuring these parameters are quite varied and 
range from manually tracing the trajectory of larvae on glass plates 
[43] to radar motion detection of fly populations in tubes [23]. 
Unfortunately, many of these techniques suffer from a lack of 

  
Figure 3.3. The path traced by a C57BL/6J mouse during a 30 min session in the Open Field, is partitioned by the SEE algorithms in 
into four intrinsically distinct components.  

Figure 3.2. (A) The path of a rodent using a 3D representation 
of X, Y, and time (in data points) is shown. (B) The distribution 
of speed peaks (dark line) is used to parse the data into 
segments: lingering (L) and progression (P). (C,D,E) The data 
can be treated as a string of these discrete units. 



sufficient temporal resolution, cannot track individual flies in a 
population, or are very labor-intensive. Also, the most 
comprehensive descriptions of behavior come from direct, 
continuous observation of behaving flies on fine time scales; thus, it 
is no surprise that automated image acquisition and processing 
techniques promise to be some of the most useful methods for 
phenotypic characterization of fly behavior.  

Whereas image processing techniques have been instrumental in 
elucidating the mechanics of flight in Drosophila [13, 14], thorough 
analyses of walking flies has only recently begun [35].  In most 
cases, the trajectory that the fly takes during a given assay yields the 
most comprehensive description for this locomotor behavior. From 
the image data, motion detection algorithms can be used to track the 
flies and map out their position in the environment7, similar to the 
work that has been performed in mammalian studies [9]. An 
example of such a procedure is seen in Figure 3.3 for the mouse. 
Image processing algorithms are also used to compute relevant 
parameters directly from the raw image data. Using these 
algorithms, one can then determine a fly’s orientation in the 
environment, its spatial preference, its velocity etc.—many of the 
parameters that may give insight into the neurophysiological basis 
of fly behavior.   

Many of the difficulties associated with traditional locomotor 
studies are solved with appropriate video acquisition and image 
processing. Entire populations of flies can be tracked, as well as 
individuals; variable frame rates allow for flexibility in temporal 
resolution of the behavior; and video allows one to easily determine 
spatial preferences of the flies. With high enough resolution, one 
would theoretically be able to closely reconstruct the movement of 
each body part using edge and motion detection. In addition, the fact 
that video is a relatively unobtrusive method allows a researcher to 
design an experiment so that the fly is in as close to a natural 
environment as possible and still gather useful, controlled data. 
Most important, automated acquisition, tracking, and parameter 
calculation shifts the human labor from acquisition to analysis. 

The current methods of video acquisition, tracking, and image 
processing are still at a relatively rudimentary level in fly behavioral 
studies. In most cases, the fly is simply a white dot on a dark 
background (or vice versa) in a single-camera / single fly scenario, 
providing a relatively coarse resolution in large open-field 
experiments even when good cameras are used. In addition, most 
motion-detection algorithms assume the fly to be a point object, 
neglect any movement at finer scales, and cannot track more than 
one fly at a time. For a full characterization of behavior, 
improvements must be made in both the acquisition and analysis of 
the image data. For example, one would ideally want an arena 
equipped with a multi-camera array at different magnification levels 
to capture each foot-fall of the fly, the position of its thorax in 
relation to the orientation of the feet, and the position of the head, 
antennae, and proboscis in relation to the rest of the body. 
Furthermore, one could envision increasingly complex experimental 
setups, such as a high magnification camera which physically tracks 
the subject to allow detailed movies of a large arena at 
comparatively low data rate, together with a thermal imaging 
camera for detailed profiling of temperature controlled experiments. 

                                                                 
7Common behavioral analysis software that performs such 

tracking are SEE, EthoVision, and DIAS. 

Microphones can be added to detect song in courtship or aggression 
experiments and LED displays incorporated to provide the flies with 
visual stimuli. With these improvements in design, algorithms that 
determine the fly shape, heading, orientation of body parts, 
separation of individuals, and correlations between the video and 
audio data must be employed to extract all of the useful behavioral 
information. Clearly, sophisticated MMSP techniques must be 
utilized for analyzing the data from these biological studies. 

5. CONCLUSIONS 
The use of multimedia recordings and the importance of multimedia 
content analysis in neuroscience behavioral experiments will only 
increase as consumer technology improves and as researchers 
design more sophisticated and open-ended experimental setups. This 
trend will require neuroscientists to become familiar with and 
embrace MMSP methods for the proper analysis of that data. 
As the study of song learning in zebra finch and vocal development 
in the human infant has shown, detailed acoustic analysis combined 
with robust signal processing are key when characterizing audio 
recordings of song and language. Automated techniques must 
segment any sounds into units appropriate for the subject, and 
robust measures need to be used for proper categorization of sounds. 
There is a need to replicate the existing zebra finch type studies in a 
human context by performing large-scale recordings and bringing 
automated analysis techniques to bear on the database. 
Simultaneous video recording is already common in both areas, but 
needs to be integrated more fully into the analysis.  
The acquisition of video in neuroscience is not only limited by the 
state of the art of camera manufacture, but by the ability of the 
researcher to store and analyze the results. In the rodent case, 
progress was made by carefully smoothing and segmenting the 
measured positional data obtained from the video. Locomotion was 
then characterized according to distinct types of motion, such as 
lingering and progression along a wall or across a chord. Similar 
Drosophila locomotor studies are in progress, as well as experiments 
which use tethered flies in a flight simulator for behavioral assays.  

By combining video, audio and additional channels, nearly 
complete characterizations of behavior are possible. Certainly, we 
will see large advances in characterization of behavioral phenotypes 
in the zebra finch, human, rodent and  Drosophila during the next 
decade. It is likely that advances in MMSP techniques will be 
critical to these studies. Applications of MMSP techniques applied 
to behavioral data may even become as important as the application 
of algorithmic techniques from computer science to genomic data. 
Only by adding sophisticated phenotypic information extracted 
from behavior, to genotypic information and electrophysiological 
and imaging data, can we expect to gain a fuller understanding of 
brains and of animal behavior. Apart from scientific interest, 
automated behavioral quantification of animal models is crucial for 
biomedical research including the development of therapies for 
mental illness, thus providing MMSP researchers an opportunity to 
participate in this arena. 
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